Dominant-negative subunits reveal potassium channel families that contribute to M-like potassium currents.
نویسندگان
چکیده
M-currents are K+ currents generated by members of the KCNQ family of K+ channels (Wang et al., 1998). However, in some cells, M-like currents may be contaminated by members of other K+ channel gene families, such as the erg family (Meves et al., 1999; Selyanko et al., 1999). In the present experiments, we have used the acute expression of pore-defective mutants of KCNQ3 (DN-KCNQ3) and Merg1a (DN-Merg1a) as dominant negatives to separate the contributions of these two families to M-like currents in NG108-15 neuroblastoma hybrid cells and rat sympathetic neurons. Two kinetically and pharmacologically separable components of M-like current could be recorded from NG108-15 cells that were individually suppressed by DN-Merg1a and DN-KCNQ3, respectively. In contrast, only DN-KCNQ3, and not DN-Merg1a, reduced currents recorded from sympathetic neurons. Pharmacological tests suggested that the residual current in DN-KCNQ3-treated sympathetic neurons was carried by residual KCNQ channels. Ineffectiveness of DN-Merg1a in sympathetic neurons was not caused by lack of expression, as judged by confocal microscopy of Flag-tagged DN-Merg1a. These results accord with previous inferences regarding the roles of erg and KCNQ channels in generating M-like currents. This experimental approach should therefore be useful in delineating the contributions of members of these two gene families to K+ currents in other cells.
منابع مشابه
Inward rectifier potassium channels. Cloning, expression and structure-function studies.
A PCR-based cloning strategy was used to identify novel subunits of the two-transmembrane domain inward rectifier potassium channel family from rat brain, heart, and skeletal muscle. When expressed in Xenopus oocytes, two of these clones (Kir4.1 and Kir2.3) gave rise to inwardly rectifying potassium currents. Two-electrode voltage clamp commands to potentials negative to EK evoked inward potass...
متن کاملA mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits.
ATP-sensitive potassium channels are an octomeric complex of four pore-forming subunits of the Kir 6.0 family and four sulfonylurea receptors. The Kir 6.0 family consists of two known members, Kir 6.1 and Kir 6.2, with distinct functional properties. The tetrameric structure of the pore-forming domain leads to the possibility that mixed heteromultimers may form. In this study, we examine this b...
متن کاملLong-QT syndrome-associated missense mutations in the pore helix of the HERG potassium channel.
BACKGROUND Mutations in the human ether-à-go-go-related gene (HERG) cause chromosome 7-linked long-QT syndrome (LQTS), an inherited disorder of cardiac repolarization that predisposes affected individuals to arrhythmia and sudden death. METHODS AND RESULTS Here, we characterize the physiological consequences of 3 LQTS-associated missense mutations (V612L, T613M, and L615V) located in the pore...
متن کاملClinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability.
Episodic ataxia type 1 (EA1) is an autosomal dominant central nervous system potassium channelopathy characterized by brief attacks of cerebellar ataxia and continuous interictal myokymia. Point mutations in the voltage-gated potassium channel gene KCNA1 on chromosome 12p associate with EA1. We have studied 4 families and identified three new and one previously reported heterozygous point mutat...
متن کاملA novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy.
Episodic ataxia type 1 (EA1) is a rare autosomal dominant disorder characterized by brief episodes of ataxia associated with continuous interattack myokymia. Point mutations in the human voltage-gated potassium channel (Kv1.1) gene on chromosome 12p13 have recently been shown to associate with EA1. A Scottish family with EA1 harbouring a novel mutation in this gene is reported. Of the five affe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2002